

Tetrahedron Letters 41 (2000) 9233-9237

Highly enantioselective copper-catalyzed substitution of allylic chlorides with diorganozincs

Frank Dübner and Paul Knochel*

Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstraße 5-13, Haus F, 81377 Munich, Germany

Received 14 September 2000; accepted 22 September 2000

Abstract

The new ferrocenyl ligand 1i allows the performance of a highly enantioselective copper catalyzed S_N2' -allylic substitution of allylic chlorides with diorganozincs, providing substituted products with enantiomeric excesses of up to 98%. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: copper; enantioselective allylation; zinc; asymmetric synthesis; ferrocene.

The allylic substitution reaction of allylic electrophiles with organometallic reagents is an excellent method for forming new carbon–carbon bonds.^{1–3} Palladium(0)-catalyzed allylic substitutions have proven to be excellent methods for the enantioselective substitution with stabilized organometallic reagents such as malonate anions or related species; however, enantioselective substitution with alkyl groups is more limited.^{4–9}

Alternatively, copper-catalyzed allylic substitutions with alkyl organometallics show more promise. Unfortunately, only moderate enantioselectivities have been obtained up to now.^{10–12} Recently, we have reported that ferrocenyl amines such as **1c** are excellent ligands for the enantioselective substitution of allylic chlorides with diorganozincs. The enantiomeric excess with dineopentylzinc reaches 87%, but the reaction requires a temperature of -90° C and is limited to very hindered diorganozincs.¹² Thus, under these conditions, the substitution of cinnamyl chloride with the less hindered dipentylzinc provides an enantiomeric excess of only 26%.

Herein, we wish to report the use of an improved ligand, which allows the reaction to be performed at -30° C and leads to products with enantioselectivities of up to 98%. Thus, we have prepared a range of ferrocenyl amines of type **1**, starting from the readily prepared ferrocenyl ketones **2a–i**, followed by an enantioselective CBS reduction,¹³ providing the corresponding

^{*} Corresponding author. Fax: 089/2180-7680; e-mail: paul.knochel@cup.uni-muenchen.de

alcohols **3a**–i in good yields (60–88%) and excellent enantioselectivities (>99% *ee*). The acylation of the alcohols **3a**–i with acetic anhydride in pyridine furnishes the corresponding acetates, which by treatment with aqueous ammonia in CH₃CN provide the ferrocenyl amines **1a–i** in 40–60% yield (Scheme 1). These ligands were tested in the substitution of cinnamyl chloride with dineopentylzinc [THF, -50° C, CuBr·Me₂S (1 mol%), ligand **1** (10 mol%)] leading to product **6a** (Table 2).

We observed that steric hindrance in the ligand is a key parameter for obtaining a high enantioselectivity. Thus, both the naphthyl (entry 3 of Table 1) and the 9-phenanthrenyl substituted ligands (entry 5) gave better results than the phenyl substituted system (Ar=Ph). However, best results were obtained by introducing sterically hindered substituents on the phenyl ring (entries 4, 6, 7, 8 and 9), leading finally to the ferrocenyl amine **1i** as the best ligand (92% *ee*).

Table 1 Optimization of the ferrocenyl amine ligand **1** for the copper catalyzed allylic substitution of cinnamyl chloride with dineopentylzinc

Entry	Ar	Catalyst	$S_{\mathbf{N}} 2'/S_{\mathbf{N}} 2$	ee (%)	
1	Phenyl	1a	95:5	32	
2	1-Naphthyl	1b	93:7	33	
3	2-Naphthyl	1c	95:5	42	
4	<i>p</i> -Biphenyl	1d	97:3	38	
5	9-Phenanthrenyl	1e	98:2	61	
6	o-Bromophenyl	1f	96:4	38	
7	<i>p-tert</i> -Butylphenyl	1g	96:4	56	
8	3,5-Dimethylphenyl	1h	97:3	66	
9	3,5-Di- <i>tert</i> -Butylphenyl	1i	98:2	92ª	

^a $[\alpha]_{D}^{20} = +62$ (*c* 1.5, CHCl₃).

A further improvement in the reaction conditions, by the simultaneous addition of the diorganozinc 4 and the allylic chloride 5 in 3 h using a syringe pump, increased the enantioselectivity of product 6 and avoided the using of very low reaction temperatures (-30° C instead of -50° C or -90° C). The results are summarized in Table 2 and Scheme 2.¹⁴

Dineopentylzinc still gives the best results, with over 98% *ee* in the case of *p*-trifluoromethylcinnamyl chloride (entry 2 of Table 2). Remarkably, now *n*-dialkylzincs such as dipentylzinc (entry 7) and diethylzinc (entry 8) also give satisfactory results (44–65% *ee*).

Entry	Diorganozinc (R ¹)	Allylic Chloride (R ²)	Product	$S_N 2'$: $S_N 2$	ee (%) ^{a,d}	Yield (%) ^b
1	neo-Pentyl	Phenyl	Ph 6a	a 98:2	96 (82)	82
2	neo-Pentyl	4-CF ₃ -C ₆ H ₄	F ₃ C 6t	b 98 : 2	98 (87)	85
3	neo-Pentyl	2-Thienyl	S- 60	e 97:3	77 (63)	80
4	neo-Pentyl	c-Hexyl	60	dl 99:1	90 (76)	84
5	neo-Pentyl	1-Naphthyl	66	e 98:2	86 (71)	72
6	iso-Butyl	Phenyl	Ph 61	f 98 : 2	72 (45)	86
7	Pentyl	Phenyl	Ph 6g	g 98:2	65 (26)	88
8	Ethyl	Phenyl	Ph 61	h 98:2	44 (10); 52 ^c	89

Table 2 Enantioselective addition of diorganozines to allylic chlorides catalyzed by CuBr·DMS (1 mol%) in the presence of the chiral ligand 1i at -30° C (simultaneous addition of the reagents)

^a The enantiomeric excess was determined by gas chromatography using a CP-Chiralsil-Dex CB column. The enantiomeric excess in parentheses was obtained using the previous best ligand 1c at -50 °C or -90 °C.
^b Yield of analytically pure products.
^c Using the mixed diorganozinc reagent *n*-ethyl-*neo*-pentylzinc.

^d The sign of the optical rotation was positive in all examples. The value of $[\alpha]_D^{20}$ for **6a** was +65, for $6b + 57 (c = 1.5, CHCl_3).$

By using mixed diorganozinc reagents,¹⁵ specifically *n*-alkyl-*neo*-pentylzincs, it was further possible to increase the enantioselectivity of the reaction. In the case of ethyl as the *n*-alkyl group, compound **6h** is formed with 52% *ee* compared to 44% *ee* using diethylzinc (Table 2, entry 8). Interestingly, the formation of product **6a** was not observed; only the ethyl group is transferred, leading to **6h**.

As well as simple alkyl groups, functionalized diorganozincs, such as di(4-acetoxybutyl)zinc²⁻⁹ 7 and di(4-carboethoxybutyl)zinc^{6,16} 8 also add to cinnamyl chloride with 50% *ee*, providing the functionalized products 9 and 10 in 63–75% yield and with complete S_N2' -regiocontrol (Scheme 3).

Scheme 3.

In summary, we have found that the new ferrocenylamine **1i** allows enantioselective allylic substitution reactions to be performed for the first time with primary and secondary dialkylzincs as well as with functionalized diorganozincs with a good level of enantioselectivity. Further improvement of the reaction conditions and the investigation of intramolecular substitutions are currently underway in our laboratories.¹⁷

Acknowledgements

We thank Zeneca Ltd for a fellowship to F.D. and the Fonds der Chemischen Industrie for generous support. We thank the BASF AG, Degussa AG and Chemetall GmbH for the generous gift of chemicals.

References

- 1. Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395-422.
- 2. Reiser, O. Angew. Chem., Int. Ed. Engl. 1993, 32, 547-550.
- 3. Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336-345.
- 4. Trost, B. M.; Ariza, X. J. Am. Chem. Soc. 1999, 121, 10727-10737.
- 5. Trost, B. M.; Hildebrand, S.; Dogra, K. J. Am. Chem. Soc. 1999, 121, 10416-10417.
- 6. Trost, B. M.; Heinemann, C.; Ariza, X.; Weigand, S. J. Am. Chem. Soc. 1999, 121, 8667-8668.
- 7. Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1999, 121, 4545-4554.
- 8. Pfaltz, A. Synlett 1999, 835-842.
- 9. Helmchen, G.; Kudis, S.; Sennhenn, P.; Steinhagen, H. Pure Appl. Chem. 1997, 69, 513-518.
- 10. Van Klaveren, A.; Persson, E. S. M.; del Villar, A.; Grove, D. M.; Bäckvall, J. E.; van Koten, G. Tetrahedron Lett. 1995, 36, 3059–3062.
- 11. Meuzelaar, G. J.; Karlström, A. S. E.; van Klaveren, M.; Persson, E. S. M.; del Villar, A.; van Koten, G.; Bäckvall, J. E. *Tetrahedron* 2000, *56*, 2895–2903.
- 12. Dübner, F.; Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 379-381.
- Schwink, L.; Knochel, P. Chem. Eur. J. 1998, 4, 950–968; for recent applications of related chiral ferrocenyl ligands in asymmetric reductions, see: Ireland, T.; Grossheimann, G.; Wieser-Jeunesse, C.; Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 3212–3215.
- 14. The absolute configuration of products 6 were determined as cited in Ref. 12.
- 15. Jones, P.; Reddy, C. K.; Knochel, P. Tetrahedron Lett. 1999, 40, 1471-1474.
- 16. Knochel, P.; Almena Perea, J. J.; Jones, P. Tetrahedron 1998, 54, 8275-8319.
- 17. Typical procedure. Preparation of ethyl 5-phenyl-6-heptenoate (10). To a cooled (-30°C) solution of CuBr·SMe₂ (4.11 mg, 0.02 mmol) and ligand 1i (68.2 mg, 0.20 mmol) in THF (5 mL) is added the diorganozinc 8 (2.40 mmol) in THF and cinnamyl chloride (0.31 g, 2.00 mmol) simultaneously over a period of 3 h. After usual work up, the crude residue is purified by chromatography (silica gel, pentane). Evaporation of the solvents furnishes product 10 (232 mg, 1.00 mmol, 50% yield, 50% ee) as a colorless oil.